Tutorial 4: multiple gene expression tables

Starting from a list of gene IDs with optional expression values

Gene List Input

Multiple Gene Expression Tables

Starting with several gene expression tables for meta-analysis

Network File

Starting with a network file (sif, graphml, json)

Gene Expression Table

Raw RNA-seq Data

Starting from a single count table (RNAseq) or intensity table (microarray)

Uploading RNAseq fastq files to our Galaxy server for mapping & quantification
Intro to NetworkAnalyst

- Web application that enables complex meta-analysis and visualization
- Designed to be accessible to biologists rather than specialized bioinformaticians
- Integrates advanced statistical methods and innovative data visualization to support:
 - Efficient data comparisons
 - Biological interpretation
 - Hypothesis generation
Computer and browser requirements

• A modern web browser with Java Script enabled
 • Supported browsers include Chrome, Safari, Firefox, and Internet Explorer 9+
• For best performance and visualization, use:
 • Latest version of Google Chrome
 • A computer with at least 4GB of physical RAM
 • A 15-inch screen or bigger (larger is better)
• Browser must be WebGL enabled for 3D network visualization
• 50MB limit for data upload
 • ~300 samples for gene expression data with 20 000 genes
Goals for this tutorial

• A meta-analysis is a quantitative synthesis of results from multiple studies that test similar hypotheses
• Gene expression meta-analyses aim to identify robust molecular signatures and functional enrichment results to increase understanding of biological processes
• Requires advanced statistics and visualization strategies
• The goal of this tutorial is to complete a meta-analysis of expression profiles from 3 different studies:
 • Perform and combine statistical tests
 • Visualize results in interactive heatmaps, Venn diagrams, and 3D PCA plots
Appropriate datasets

• The two main steps of a meta-analysis are:
 • Systematic literature review to identify studies that test the same hypothesis
 • Rigorous statistical analysis of the datasets using established methods

• NetworkAnalyst provides a platform for the second step

• For the meta-analysis to be a success, appropriate datasets should be used:
 • Study designs should compare the same experimental factors
 • Gene expression platforms should be comparable (i.e. studies should not be spread over > 10 years)
 • Relative similarity of host factors (i.e. species, tissue, sex, age etc.)
The first step is to upload and process all of your individual datasets. This repeats the steps of a single gene expression table for each dataset - for more details on each step, see tutorial 3.

If you don’t have supported IDs, ensure the same annotation is used across all datasets and leave the second box “unspecified”

You can edit meta-data labels here

Check QA/QC plots before and after normalization
Make sure the contrasts compare the same factors for all uploaded datasets.
Select example data

For the rest of this tutorial, we will use the example data

Click “Try our example” and “Yes”

Click “Proceed”
For a meta-analysis to be done properly, the individual analyses must test contrasts between the same factors. The integrity check ensures that the labels are consistent for all previous analytical steps.

Click “Next” and “Proceed”
View raw data and correct batch effect

1. Use the PCA and density plots to check the quality of the data. Here we see significant batch effect, so select Combat and click “Update”.

2. After applying Combat, the study batch effect has been greatly reduced!

3. Click “Proceed”
Conduct gene-level meta-analysis

NetworkAnalyst has four approaches for gene-level meta-analysis. The first two are recommended, while the second two (vote counting and direct merging) should be used for exploratory purposes only. Since we have many DEGs, we choose to combine based on effect sizes.

Here we will base the meta-analysis on effect sizes. To choose between a FEM and REM, generate a Q-Q plot by clicking “Cochran’s Q Tests”.

From the Q-Q plot we see that the data deviates substantially from the straight line, so select REM.

Click “Proceed”
The results can be sorted before being downloaded as a .csv file.

Click on the picture icon to see a boxplot of a specific gene across datasets.

Click “Proceed”
Analysis overview

We now want to further analyze and visualize the results of the statistical analysis. There are 4 datasets to work with: the 3 individual datasets and their significant genes, and the combined statistics from the meta-analysis. The “Sig. Gene Analysis” tools are based on the 4 lists of significant genes. The “Global Analysis” tools use the matrix of combined statistics from the meta-analysis for GSEA tools and all gene expression data for PCA 3D.

Network Visual Analytics can only be performed on a single list at a time. See tutorial 2a and 5 for more details on creating networks.

See tutorial 2b for more details on how to use Venn and Chord Diagrams to compare the overlap of multiple gene lists.
The ORA heatmaps are interactive, allowing users to easily visualize, perform enrichment analysis, and define gene signatures using groups of genes from the heatmap.

1. Select a group of genes with a distinct expression pattern in the overview by dragging your mouse. They will appear in the focus view.

2. Click “Builder” to construct a custom heatmap.

By clustering the genes and samples, we see that there are clear differences between the infected and controls across all three datasets.

Perform enrichment analysis on the genes in the focus view.
Enrichment networks help interpretation of enrichment analysis results since sets with a significant number of overlapping genes are connected with an edge, grouping functionally similar sets together. Here, ORA can be performed on any subset of the three gene lists.

Gene set nodes are coloured based on their enrichment p-value. Gene nodes are coloured based on the combined statistic from the meta-analysis.

Double-clicking a gene set meta-node expands the view of nodes for the significant genes that are part of that set.

You can view gene sets of interest separately from the rest of the network by selecting their name and clicking “Extract”.

ORA Enrichment Network
GSEA for meta-analysis

• A computational method for determining if the expression of a set of genes (biological pathways, etc.) is correlated with phenotypic differences between sample groups

• Incorporates actual gene expression data and so it is able to detect more sensitive differences than simple ORA

• Always requires input genes to be ranked somehow – here the meta-analysis results are used as the ranking metric

• GSEA results using meta-analysis statistics can be thought of as a “gene set-level meta-analysis”

• Refer to the original paper for more details on GSEA:
 • https://www.pnas.org/content/102/43/15545.short
GSEA is performed using the meta-analysis results to rank the genes. The GSEA heatmap tool allows users to generate a heatmap of expression across datasets for any enriched pathway.

Click "Download" to generate a high quality PNG or SVG image of the heatmap.

Here, we see general separation between the infected and control samples for this gene set.
Since GSEA is performed using the meta-analysis results only, set operations between different datasets are not enabled.

Change to “Bipartite network” to view the individual shared genes between gene sets.
Dimension reduction

3D PCA plots are useful for visualizing the variance in whole-transcriptome measures of gene expression across different studies.

Choose whether to use a subset of genes to generate the 3D PCA plots.

Adjust the number of genes displayed in the loading plot.

Click a gene in the loading plot to see its expression across all datasets.
The End

For more information, visit the FAQs, Tutorials, Resources, and Contact pages on www.networkanalyst.ca